Цифровое телевидение – что это такое?
От редакции
Наша сегодняшняя жизнь немыслима без приборов, в которых используются передовые технологии. Но, пользуясь ими повседневно, понимаем ли мы их суть? «Нам и не нужно этого знать» — скажут одни. «Было бы любопытно узнать об этом хотя бы в общих чертах», — скажут другие, — «но это же слишком сложно». Мы решили попытаться ввести самых пытливых наших читателей в курс современных технологических достижений, обратившись к специалистам в этой области. Безусловно, многие пропустят эти страницы, но те, кто не пожалеет времени и усилий на их прочтение, смогут понять основные принципы работы той техники, которая открывает нам столько новых возможностей.
Предлагаемая вашему вниманию статья - лишь краткое введение в огромную тему, которую можно назвать «Направления развития современного телевидения». В дальнейшем мы планируем познакомить вас с такими понятиями, как телевидение высокой четкости, мобильное телевидение, 3D-телевидение и др.
Мы находимся в самой гуще новой технологической революции — массового распространения цифрового телевизионного вещания. Цифровое телевидение — это принципиально новые возможности, это интерактивность, это среда доставки мультимедийного трафика и т.п. Поэтому переход от традиционного аналогового телевидения к цифровому — это не просто сложная техническая задача, а серьезный фактор, действующий в экономическом и социальном планах в общемировом масштабе.
Программы на любой вкус
Открывающаяся при этом возможность передавать большое количество каналов позволяет существенно расширить ассортимент программ, предлагаемых пользователю.
Если раньше зрителю приходилось искать интересующую его передачу, а потом согласовывать свои дела с временем её трансляции, то цифровое телевидение с успехом решает обе эти задачи. Для каждого жанра есть место на определенном канале.
Например, любители серьезной музыки, для которых раньше показывали концерты от силы раз в неделю и по праздникам, получили в свое распоряжение несколько круглосуточных каналов. А спортивным болельщикам цифровая техника предоставляет чуть ли ни по каналу для каждого вида спорта. Если так пойдет и дальше, то скоро все спортсмены займут места перед телевизорами и выступать будет некому. Тем, кому нравится кинематограф, предоставлено огромное количество фильмов, любители природы и путешествий не выходя из дома, побывают в любом уголке планеты, а зрители, интересующиеся тем, что происходит в мире, смогут регулярно знакомиться с последними новостями, узнавать о погоде и сводках с биржи.
Больше строк, меньше помех
Цифровые технологии доводят до массового зрителя сигнал студийного качества практически без искажений. Появляется возможность передавать видеоизображения телевидения высокой четкости — ТВЧ (англ. HDTV — High Definition Television) с числом строк развертки от 720 до 1080 и выше (формат 16:9) против 480-625 строк обычного телевидения (формат 4:3). Гораздо эффективнее используется частотный диапазон: вместо одного аналогового телевизионного канала можно формировать несколько цифровых т.е. резко возрастает число принимаемых программ.
В чем же главные преимущества цифровых методов передачи, обработки и хранения информации?
Прежде всего — это повышение помехоустойчивости, достигаемое в цифровых схемах. Как известно, возможность безошибочной передачи информации в первую очередь определяется соотношением сигнал/помеха в канале связи. Для получения достаточно хорошего субъективного качества изображения при приеме аналогового телевизионного сигнала это соотношение на входе телевизора должно составлять порядка 50 дБ, т.е. амплитуда сигнала должна быть больше среднеквадратического значения напряжения помехи не менее чем в 300 раз. Если же это не так, то импульсы помех неизбежно появляются на экране в виде мерцающих белых и черных точек (шумов, «снега»), муаров и цветных «факелов» на переходах. Цифровое телевидение способно отфильтровывать импульсные помехи от полезного сигнала, даже если он сильно ослаблен и зашумлен. Благодаря раздельной передаче сигналов яркости и цветности в цифровом телевидении исключаются перекрестные искажения «яркость-цветность» и достигается высокая разрешающая способность. Качество воспроизведения изображения практически не зависит от среды распространения сигнала и определяется только совершенством аппаратуры.
Применение цифровых методов позволяет устранить многие недостатки аналоговых систем, в том числе искажения сигнала при его формировании, обработке и передаче, накапливающиеся с увеличением числа преобразований, переприемов и перезаписей. Цифровые методы сжатия данных и модуляции обеспечивают возможность многопрограммного телевизионного вещания, при котором по одному каналу можно передавать сигналы нескольких вещательных программ. Учитывая нехватку эфирных каналов в крупных городах и ограниченную способность спутниковых ретрансляторов, это свойство цифрового сигнала оказывается весьма актуальным.
Только «нули» и «единицы»
В аналоговой электронике известны многие виды обработки сигналов: усиление, ограничение, модуляция, демодуляция и т.п. Для их выполнения используются физические процессы в элементах и узлах электронных схем.
Цифровая же обработка сигнала заключается в выполнении математических операций над числами, его составляющими. Подобная цифровая обработка дает возможность решать задачи, которые не были доступны в аналоговой технике, например:
• кодирование телевизионных сигналов для уменьшения требуемой для их передачи пропускной способности каналов связи (сжатие или компрессия сигналов);
• преобразование форматов телевизионной развертки;
• цифровая фильтрация сигналов;
• кодирование телевизионных сигналов для уменьшения влияния помех.
Что же означают понятия «цифровой», «цифровое» (англ. digital), которые сейчас повсеместно используются в радиоэлектронике?
В аналоговых (нецифровых) устройствах и системах информация передается, обрабатывается и хранится в виде непрерывно изменяющихся физических величин— аналоговых сигналов. Их значения в каждый момент соответствуют значениям физических величин, например, напряжения, тока и т.п.
В цифровых же устройствах любая информация имеет вид последовательности чисел. Для передачи информации применяются двоичные числа, каждый разряд (бит) которых может принимать одно из двух значений: логический ноль (низкий уровень сигнала) или логическая единица (высокий уровень). Если используется b двоичных разрядов, то каждое число (слово) может принимать одно из 2b значений. Например, 8-разрядные (восьмибитовые, однобайтовые) неотрицательные двоичные числа принимают значения от 00000000 (десятичное число 0) до 11111111 (десятичное число 255). В устройствах цифровой обработки сигналов, или ЦОС (англ. DSP — Digital Signal Processing) используются различные формы представления любых чисел (в том числе отрицательных и дробных).
Выполняем дискретизацию
Давайте попробуем преобразовать аналоговый сигнал в цифровой, взяв в качестве исходного аналогового сигнала один период обычной синусоиды. Для этого нам необходимо выполнить следующие операции:
• дискретизацию во времени, т.е. замену непрерывного аналогового сигнала последовательностью его значений в дискретные моменты (Рис. 1а). Они представляют собой последовательности коротких импульсов, амплитуды которых в выделенные моменты соответствуют мгновенным значениям непрерывного сигнала. Такие импульсы называются выборочными значениями (выборками) или отсчетами. Временной интервал ТД между отсчетами называется интервалом дискретизации (выборки);
Рис. 1а
• квантование по уровню, заключающееся в нахождении для каждого отсчета сигнала ближайшего к нему нижнего разрешенного уровня из используемого набора фиксированных уровней, называемых уровнями квантования (Рис. 1б). Эти уровни разделяют весь диапазон значений отсчетов на конечное число интервалов, называемых шагами квантования. Передавать точно значения отсчетов нет необходимости, поскольку глаз человека обладает конечной разрешающей способностью по яркости. Это позволяет разбить весь диапазон значений отсчетов на конечное число уровней. Если выбрать его достаточно большим, чтобы разность между двумя ближайшими уровнями в итоге не была заметна зрителю, появляется возможность вместо передачи всех значений отсчетов передавать лишь определенное число их дискретных значений;
Рис. 1б
• кодирование (оцифровку), в результате которого номер (код) найденного уровня квантования представляется в виде двоичного числа в параллельной или последовательной форме..
Дискретизация аналогового сигнала, таким образом, может производиться как по времени, так и по значению величины сигнала. «Сняв» значения кодов с вертикальной шкалы на Рис. 1б, мы получим последовательное представление квантованных уровней полученного цифрового сигнала в двоичном коде. Наша исходная плавная синусоида превратилась в такую последовательность чисел: 011, 100, 101, 110, 101, 100, 011, 010, 001, 001, 010, 011.
Все перечисленные операции выполняются обычно в одном устройстве — аналого-цифровом преобразователе, АЦП (англ. ADC — Analogue-to-Digital Converter). Обратное преобразование цифрового сигнала в аналоговый осуществляется цифроаналоговым преобразователем, ЦАП (DAC — Digital-to-Analogue Converter).
Поток информации
В чем же уникальность цифрового сигнала? Прежде всего, в его простоте: как уже было сказано, используется всего лишь две величины: логические 0 и 1. Такой цифровой сигнал можно легко защитить кодированием, обновить в нем ослабленные или поврежденные места, копировать его без потерь качества.
Цифровой сигнал избавлен от присущих аналоговому сигналу недостатков, однако он обладает во много раз большим объемом информации по сравнению с аналоговым, а это существенно повышает требования к сигнальному тракту и ширине полосы его пропускания. Так, классический аналоговый телевизионный сигнал довольствуется скоростью передачи потока до 20 мегабит в секунду (Мбит/с), а для потока цифровой информации необходима скорость на порядок выше. Скорость передачи изображения HDTV с высоким разрешением и форматом 16:9 может достигать 1 Гбит/с.
Таким образом, перевод на цифровую систему всего тракта от студии до зрителя может осуществляться двумя способами: во-первых, радикальным повышением мощности и расширением полосы пропускания канала передачи, а во-вторых, изменением объема передаваемой информации. Второй способ оказался более реальным и выгодным. В связи с этим и были разработаны методы уменьшения объема — так называемые методы сжатия цифровой информации.
Сжатие: с потерями и без потерь
В зависимости от способа преобразования данных существует два метода сжатия. Первый не допускает потери ни одного бита информации и используется при сжатии, например, текстовой информации. Второй допускает потерю части информации и с успехом используется при преобразовании звука и изображения, т.е. информации, которую каждый индивидуум воспринимает по-своему и это не влияет на субъективное восприятие.
При сжатии (компрессии) движущихся изображений используется комбинация устранения несущественной информации и сокращения так называемой избыточной информации. Избыточность (англ. redundancy) связана с тем, что в последовательности соседних кадров с изображением одной сцены большая часть кадра остается, как правило, неизменной. Например, в сцене, на которой запечатлено движение велосипедиста на фоне природы, отдельные кадры различаются лишь несколькими процентами от общей площади изображения. Одинаковые части соседних кадров можно быстро выделить, записать в цифровую память и обновлять значительно реже, чем остальные кадры, например, после каждого восьмого кадра, а в промежутках добавлять к ним только частичные изменения.
Устранение несущественной информации (англ. irrelevancy) основано на особенностях зрения человека, которое не различает детали за определенной границей восприятия. Проще всего удаляются события минимальной продолжительности, менее всего воспринимаемые зрением.
По инициативе ISO (Международная организация по стандартизации) и IEC (Международная электротехническая комиссия) в 1988 г. была основана группа специалистов по вопросам движущихся изображений MPEG (Motion Picture Expert Group), которой была поставлена задача создания систем сжатия данных. Группой был создан ряд стандартов сжатия, наиболее интересными из которых для цифрового телевидения представляются MPEG-2 и MPEG-4.
Стандарт MPEG-2, предназначенный в первую очередь для телевизионного вещания, был принят еще в 1994 г., а в 1995 г. стал международным. В соответствии с ним видеосигнал компрессируется в 20–40 раз, что позволяет передавать по существующим телевизионным каналам сигнал цифрового телевидения высокого качества или 4–10 программ обычного телевидения.
Принятый в 1994 г. стандарт MPEG-4 обеспечивает еще большие коэффициенты сжатия, чем MPEG-2. Этот стандарт был создан в первую очередь для передачи аудиовизуальной информации по узкополосным каналам связи, а в настоящее время получил широкое распространение как средство записи кинофильмов и видеопрограмм на лазерные диски. Кроме того, только этот стандарт способен обеспечить интерактивность, т.е. возможность для пользователя воздействовать на процесс передачи ему информации путем запросов и выбора вариантов по обратному каналу связи.
Продолжение следует
Текст: Александр Пескин, доцент МГТУ им. Н.Э.Баумана