3D-телевидение: что это такое?
От редакции
Статьи «Цифровое телевидение: что это такое?» и «Мобильное телевидение: что это такое?», опубликованные нами в прошлом году, познакомили читателей с основами современных телевизионных технологий. Продолжая раскрывать тему, переходим к наиболее актуальной инновации наших дней: 3D-телевидению.
В последние годы на рынке видеоаппаратуры громко заявила о себе тенденция перехода от плоской картинки к объемной. Эффекты 3D востребованы как в развлекательном кино (как заметил по этому поводу знаменитый кинорежиссер Вуди Аллен, «я люблю стереофильмы, потому что трехмерные женщины выглядят лучше двухмерных»), так и в научных телепрограммах, особенно образовательных. Создание нового контента было начато с фильма «Аватар», и сегодня процесс развивается лавинообразно.
В ассортименте всех крупнейших производителей цифровой электроники, таких, как Sony, Samsung, Panasonic, Toshiba и др., уже присутствуют 3D-модели (англ. 3Dimensional — трехмерный). Ожидается, что такие телевизоры будут всего на 20% дороже моделей Full HD с сопоставимыми диагоналями экранов.
Владельцы техники для просмотра объемного видео должны позаботиться еще и об аппаратуре для воспроизведения 3D-контента. Чаще всего для этой цели сейчас используют совместимые с телевизорами проигрыватели Blu-ray с опцией воспроизведения сигналов 3D.
В чем суть
Большинство существующих сегодня методов формирования объемного изображения используют физиологические особенности зрения. Природа наделила человека бинокулярным зрением — парой глаз, расположенных на расстоянии 60–70 мм друг от друга. Мы видим мир одновременно с двух точек наблюдения, причем изображения, формирующиеся в левом и правом глазах, слегка отличаются. Каждый глаз получает вид одной и той же области окружающего пространства с немного разных углов и передает в мозг уникальную визуальную информацию. При одновременном поступлении двух изображений они соединяются в единое, существенно отличающееся от исходных.
Эти два изображения принято называть стереопарой. Анализируя различия между изображениями стереопары, мозг человека получает информацию об объеме и удаленности наблюдаемых объектов. Полученная картинка — это не просто сумма двух составляющих, а стереоизображение, в котором объекты воспроизводятся в трех пространственных измерениях — по ширине, высоте и глубине. Именно восприятие глубины позволяет оценивать расстояние до окружающих нас объектов.
Для создания стереоэффекта используется принцип раздельного просмотра — левому глазу демонстрируется «левое» изображение стереопары, а правому — «правое». Различия заключаются в том, каким образом достигается разделение изображений стереопары.
Надеваем 3D очки
Рассмотрим сначала те из них, которые требуют для просмотра наличия специальных очков, поскольку пока именно они преобладают в представленных на рынке моделях телевизоров.
Первый способ — анаглифический (по-гречески «рельефный») известен уже более ста лет. Он используется в кинотеатрах, где перед объективом проектора устанавливаются световые фильтры, каждый из которых пропускает красный или сине-зеленый свет (для каждого глаза свой). Для разделения изображений при просмотре используются специальные картонные очки с установленными вместо стекол красным (для одного глаза) и сине-зеленым (для другого) световыми фильтрами. Однако сейчас такой способ практически не применяется из-за весьма скромных результатов цветопередачи объемности.
Другой способ — поляризационный, когда в специальном проекционном устройстве или на ЖК-экране формируется изображение с различной поляризацией света: например, «левый» кадр имеет горизонтальную поляризацию, а «правый» — вертикальную. Стекла используемых при этом способе специальных пассивных очков являются поляризационными фильтрами, причем плоскость поляризации каждого из стекол такая же, как и у соответствующих кадров стереопары. В результате при просмотре последовательности кадров левый глаз видит только «левые» кадры, а правый — только «правые».
Поляризационный способ позволяет получить цветное объемное изображение хорошего качества, однако он сложен в реализации, так как требует наличия дорогого экрана со специальным покрытием и существенного повышения яркости изображения, поскольку до 70% света поглощается поляризационными фильтрами. В связи с этим в телевидении такой способ практически не применяется.
Именно поэтому сегодняшние решения для 3D-телевидения основаны на третьем способе, называемом затворным. Он предусматривает попеременную демонстрацию изображений, предназначенных для левого и правого глаза. Благодаря тому, что чередование кадров осуществляется с высокой частотой, мозг выстраивает целостную пространственную картину и зритель видит на экране цельное трехмерное изображение.
Для просмотра по этому методу используются активные очки, в которых вместо стекол и фильтров (в пассивных очках) встроены два активных жидкокристаллических затвора (Active Shutter). Эти светопропускающие ЖКматрицы способны по команде процессора изменять свою прозрачность, то, затемняясь, то, просветляясь, в зависимости от того, на какой глаз в данный момент необходимо направить свет.
Ранние модели затворных очков, предназначенных в основном для компьютеров, подключались к ним с помощью кабеля. Сейчас почти все производители стереотелевизоров используют для их связи с очками инфракрасное излучение (как в пультах дистанционного управления). Поэтому все современные модели телевизоров имеют беспроводной ИК-интерфейс, через который происходит управление коммутацией и синхронизация затворных очков.
Этот способ позволяет получить высокое качество разделения кадров и хорошее разрешение. Однако для его полной реализации требуются устройства, способные работать на высоких частотах обновления (смены кадров). Ведь каждый глаз в этом случае видит изображение с пониженной вдвое частотой, поэтому возможно появление мерцания.
Частота отображения кадров, при которой мерцания незаметны, зависит от ряда факторов, в частности от соотношения длительностей интервалов активной части кадра и гашения. В телевидении изображение появляется на экране на 18,4 мс с перерывом всего в 1,6 мс, и мерцания при этом незаметны.
В случае с ЖК-очками интервал гашения практически равен активному интервалу. Если частота обновления составляет 100 Гц, то каждый глаз видит такую картинку: изображение — 19 мс, черный экран — 21 мс, и в этом случае появление мерцания неизбежно. Для устранения этого нежелательного эффекта требуется частота обновления не менее 120 Гц. В последних моделях телевизоров ведущих производителей частота смены кадров достигает 200, 400, 600 и даже 800 Гц.
Еще один современный «очковый» метод получения объемного изображения связан с появлением DLP-устройств (англ. Digital Light Processing — цифровая обработка света). В этих цифровых решениях используются встроенные быстродействующие DMP-устройства (англ. Digital Micromirror Device — цифровое микрозеркальное устройство), создающее «левые» и «правые» изображения, на основании которых и формируется стереоизображение высочайшего класса.
Формат DLP-3D основан на алгоритме Smooth Picture фирмы Texas Instruments. Технология DLP использует часть кадра Smooth Picture для генерации независимых визуальных представлений для левого и правого глаза. Сигнал формируется для каждого полукадра и по оптическому кабелю передается на затворные очки, которые преобразуют сигнал и попеременно управляют положением затвора таким образом, чтобы «левое» и «правое» изображения попадали в «нужные» глаза зрителя.
Преобразованные в цифровую форму эти изображения (исходная стереопара) затем фильтруются и прореживаются по диагонали, что приводит к образованию шахматного рисунка, состоящего из клеток левого и правого представлений в стандартном ортогональном дискретизированном формате, которые затем накладываются друг на друга и получается комбинированное чередование пикселов «левых» и «правых» изображений.
Описанный формат, в отличие от других затворных технологий, сохраняет и горизонтальное, и вертикальное разрешения изображения, обеспечивая тем самым высокое качество изображения.
Для полноты картины расскажем еще об одном «очковом» способе получения объемных изображений, применяемом пока только в компьютерных мониторах для компьютерных игр. Корпус такого монитора заметно толще корпуса обычного ЖК-монитора, так как в нем установлены сразу две ЖК-матрицы с разрешением 1680x1050 пикселов — так называемые передний и задний экраны. Задний экран по конструкции аналогичен дисплею обычного ЖК-монитора: он представляет собой ЖК-матрицу, помещенную между двумя поляризационными фильтрами. Передний же экран этих фильтров лишен, поскольку он не предназначен для изменения интенсивности светового потока, а служит для поворота на заданный угол плоскости поляризации света, исходящего от заднего экрана, причем позволяет изменять ее для каждого пиксела в отдельности.
Человеческий глаз, в отличие от органов зрения некоторых насекомых, не различает поляризацию света, поэтому влияние на изображение переднего экрана практически невозможно заметить. Однако стоит надеть специальные поляризационные очки, фильтры которых расположены под углом 90° друг к другу, как картина полностью меняется. Количество попадающего в глаза света от каждого пиксела, сформированного задним экраном, зависит не только от его яркости, но и от угла плоскости поляризации, заданного передним экраном.
Таким образом, каждый пиксел заднего экрана одновременно отображает оба кадра стереопары, а передний экран разделяет получаемый свет так, что через специальные поляризационные очки каждый глаз видит только предназначенные ему кадры стереопары. Иными словами, каждый пиксел заднего экрана принадлежит обоим кадрам, а передний экран определяет, какая часть его яркости должна быть воспринята одним глазом, а какая — другим.
К достоинствам такого метода можно отнести сохранение полного разрешения, а к недостаткам — двухкратное падение яркости в стереоскопическом режиме.
Текст: Александр Пескин, доцент МГТУ
им. Н.Э.Баумана